Qu 1	Scheme	Marks	AO			
(a)	$\begin{bmatrix} \text{Let} & F \sim N(166.5, 6.1^2) \end{bmatrix} P(F < k) = 0.01 \Rightarrow \frac{k - 166.5}{6.1} = -2.3263$	M1	3.4			
	•••=					
	k = 152.309 <u>152</u> or awrt <u>152.3</u>	A1 (2)	1.1b			
(b)	$[P(150 < F < 175) =] 0.914840 \text{awrt } \underline{0.915}$	B1	1.1b			
(c)	P(<i>F</i> > 160 150 < <i>F</i> < 175)	(1) M1	3.1b			
(0)	$= \frac{P(160 < F < 175)}{P(150 < F < 175)} \underline{\text{or}} \frac{P(160 < F < 175)}{"(b)"}$	M1	1.1b			
		1011	1.10			
	$=\frac{0.7749487}{"0.91484"}$	A1ft	1.1b			
	0.91484 = 0.84708 awrt 0.847	A1	1.1b			
		(4)				
(d)	$H_0: \mu = 166.5$ $H_1: \mu < 166.5$	B1	2.5			
	[Let X = height of female from 2 nd country] $\overline{X} \sim N\left(166.5, \left(\frac{7.4}{\sqrt{50}}\right)^2\right)$	M1	3.3			
	$P(\bar{X} < 164.6) = 0.03472$	A1	3.4			
	$[0.0347 < 0.05 \text{ so significant } \underline{\text{or}} \text{ reject } H_0]$	dA1	2.2b			
	There is evidence to support Mia's belief	(4)				
		(11 mar	ks)			
(-)	Notes	0.2	2.4			
(a)	M1 for standardising (allow \pm) with k, 166.5 and 6.1 and set equal to a z value A1 for 152 or awrt 152.3 Ans only 2/2 [Condone poor use of notation e.g. P(4)]					
	Allow percentages instead of probabilities throughout.					
(b)	B1 for awrt 0.915					
(c)	1^{st} M1 for interpreting demand as an appropriate conditional probability (\Rightarrow	by 2^{nd} M1))			
	2^{nd} M1 for correct ratio of expressions (can ft their (b) on denominator) (\Rightarrow b	y ^{1st} A1ft))			
	1^{st} A1ft for a correct ratio of probs (can ft their "0.9148" to 3sf from (b) if > 2nd A1 = for event 0.847	0.775)				
	2^{nd} A1 for awrt 0.847					
(d)	B1 for both correct hypotheses in terms of μ					
	1 st M1 for selecting the correct model (needn't use $\overline{X} \Rightarrow$ by standardisation of					
	1 st A1 for correct use of the correct model i.e. awrt 0.035 (allow 0.04 if P(" \overline{X} Condone D(" \overline{X} "> 164.6) = 0.0652 or current 0.07 only if comparison with	,				
ALT	Condone P(" \overline{X} ">164.6) = 0.9652 or awrt 0.97 <u>only if</u> comparison with 0.95 is made Use of z value: Need to see $Z = -1.8(15)$ and cv of ± 1.6449 (allow 1.64 or better) for 1 st A1					
ALT	Use of CR or CV for \overline{X} : Need to see " \overline{X} "< 164.7786 or CV = (awrt 16					
	Condone truncation i.e 164.7 or better					
	2 nd dA1 (dep on M1A1 only) for a correct inference in context. Must mention <u>Mia's belief</u> or <u>mean height of females/women</u>					
	Do NOT award if contradictory statements about hypotheses made e.g.	"not sig"				
SC	M0 for $\overline{X} \sim N(164.6,)$ If they achieve $p = awrt 0.035$ (o.e. with z-value or CV of 166.3) and a correct conclusion in context is given score M0A0A1 [and SC for awrt 0.97 > 0.95 case]					
		0.77 2 0.9	5 casej			

	stion	Sc	heme	Marks	AOs
2(a)(i)		<i>X</i> ~B(15, 0.48)		M1	3.3
		P(X=3) = 0.019668	awrt 0.0197	A1	3.4
(ii)		$\left[P(X \ge 5) = 1 - P(X \le 4) \right] = 0.92$	2013 awrt 0.920	A1	1.1b
				(3)	
(b)		<i>Y</i> is the number of hits	<i>M</i> is the number of misses		
		$Y \sim N(120, 62.4)$	$M \sim N(130, 62.4)$	B1	3.3
		$P(X > 110) \approx P(Y > 110.5)$	$P(X > 110) \approx P(M < 139.5)$		5.5
		$\left[= P\left(Z > \frac{110.5 - "120"}{\sqrt{"62.4"}}\right) \right]$	$\left[= P\left(Z < \frac{139.5 - "130"}{\sqrt{"62.4"}}\right) \right]$	M1	3.4
		= 0.	88544	A1	1.1b
				(3)	
				(6 n	narks)
			Notes:		
		$15\sigma - 4\sigma^3 - 5\sigma^2$).	
(i)	A1	Allow for ${}^{13}C_3 \times 0.48^{\circ} \times 0.52^{\circ}$ as awrt 0.0197	this is "correct use" Condone B(0.48,		
(ii)	A1	awrt 0.0197 awrt 0.920 (Allow 0.92)		15)	
		awrt 0.0197 awrt 0.920 (Allow 0.92) Setting up a correct Normal mode $N\left(120, \frac{312}{5}\right)$ or $N\left(130, \frac{312}{5}\right)$ or or in words: <u>Normal with mean =</u> <u>variance = 62.4</u> or sd = $\sqrt{62.4}$ c Look out for $\sigma = \frac{\sqrt{1560}}{5}$ or $\frac{2\sqrt{39}}{5}$ This may be implied by sight of 0 Sight of the continuity correction 110.5 or 111.5 or 109.5 NB we will also allow 129.5 or 1 128.5	el. Allow sight of N(120,62.4) or N(may be awarded if used correctly in s $\frac{120/130}{20}$ and $\frac{120}{\sqrt{62.4}}$ or N(130, $\sqrt{62.4}$) or awrt 7.90 (condone 7.9) $\frac{139.5}{20}$ or 140.5 or 138.5 $\frac{139.5}{20}$ or 140.5 or 138.5 $\frac{120}{20}$ or NB we will also allow 120 121.5	$15)$ $130,62.4)$ tandardisa $\overline{4}$ or sd =	tion 62.4
(ii)	A1 B1 M1	awrt 0.0197 awrt 0.920 (Allow 0.92) Setting up a correct Normal mode $N\left(120, \frac{312}{5}\right)$ or $N\left(130, \frac{312}{5}\right)$ or or in words: <u>Normal</u> with <u>mean =</u> <u>variance = 62.4</u> or sd = $\sqrt{62.4}$ c Look out for $\sigma = \frac{\sqrt{1560}}{5}$ or $\frac{2\sqrt{39}}{5}$ This may be implied by sight of 0 Sight of the continuity correction 110.5 or 111.5 or 109.5 NB we will also allow 129.5 or 1 128.5 Continuity correction may be see NB No continuity correction(CC)	el. Allow sight of N(120,62.4) or N(may be awarded if used correctly in s $\frac{120/130}{20}$ and $\frac{120}{\sqrt{62.4}}$ or N(130, $\sqrt{62.4}$) or awrt 7.90 (condone 7.9) $\frac{139.5}{20}$ or 140.5 or 138.5 $\frac{139.5}{20}$ or 140.5 or 138.5 $\frac{120}{20}$ or NB we will also allow 120 121.5	15) 130,62.4) tandardisa $\overline{4}$ or sd = 0.5 or 119. <u>CC seen</u>	tion 62.4 5 or

Qu 3	Scheme	Marks	AO		
(a)	[Let N = height from region A ; $P(N > 180) =] 0.24937 awrt 0.249$	B1	1.1b		
		(1)			
(b)	$H_0: \mu = 175.4 H_1: \mu \neq 175.4$	B1	2.5		
	[S = height from region B] $\overline{S} \sim N\left(175.4, \frac{6.8^2}{52}\right)$ Allow $\sigma^2 = awrt 0.889$	M1	3.3		
	$[P(\overline{S} > 177.2)] = 0.02814$	A1	3.4		
	[0.028 > 0.025, Not sig, do not reject H ₀] Insufficient evidence to support student's claim	A1	2.2b		
	<u>insufficient</u> evidence to <u>support</u> student s <u>claim</u>	(4)			
(c)	$[p-value = 2 \times 0.02814 =] 0.05628$ in range <u>0.056~0.06</u> or <u>5.6(%)~6(%)</u>	B1ft (1)	1.2		
	Notes	(6 mark	s)		
(a)	B1 for awrt 0.249				
(b)	 B1 for both hypotheses correct in terms of μ (See below for one-tail test) M1 for selecting the correct model, may be implied by standardisation using correct values on may be implied by a correct value in 1st A1 e.g.(Prob =) 0.028 or awrt 0.972, (Z =) 1.9(08) (CV=) 177.25 				
	Condone use of S (or any other letter) instead of \overline{S}				
	Condone use of $\overline{S} \sim N\left(177.2, \frac{6.8^2}{52}\right)$ but this will lose 2 nd A mark				
ALT	ALT 1^{st} A1 for probability of awrt 0.028 (allow 0.03 if P($\overline{S} > 177.2$) is seen) Condone 1 – 0.02814 = 0.9718(awrt 0972) only if clearly compare Allow Z = 1.9(088) and comparison with 1.96 (or better: calc gives 1.959)				
	or CR of $[\overline{S}]$ 177.248(awrt 177.25) Allow $[\overline{S}] > \exists 77.248$ (awrt 177.25) Implied by diagram or correct interpretation of inequality with their C				
	(Ignore any attempt at a lower CR for \overline{S})	v			
	 2nd A1 (dep on 1st A1 and use of correct model. Use of N(177.2,) scores A0 for a conclusion using context: e.g. does <u>not support</u> student's <u>claim</u> <u>or</u> e.g. <u>insufficient</u> evidence of a <u>difference in heights</u> Do not allow 2nd A mark for contradictory statements e.g. "significant" so "no support for claim"))			
(c)	B1ft for answer in range 0.056~0.06 or 5.6%~6% (Ranges are inclusive, con (can ft their probability, provided < 0.5, from part (b) but not 0.025 lead		ng %)		
NB	One-tail test [Max of 3/5 for (b) and (c)] In (b) B0 (hypotheses) M1(model as above) 1 st A1[for probability <u>or</u> Z compar				
	$CR[\bar{S}]$ or > 176.95 (awrt 177)] 2 nd A1 for conclusion in context that sup				
	" <u>heights</u> of men from <i>B</i> is <u>different from/greater than</u> from <i>A</i> " In (c) B0				

Qu 4	Scheme	Marks	AO		
(a)	$2 \times 4.2, 4 \times 4, 4 \times 3.5, 10 \times 1$ (= 8.4 + 16 + 14 + 10 = 48.4)	M1	1.1b		
	[So P(10 < T < 30) =] $\left[\frac{48.4}{90}\right] = \frac{121}{225} = 0.53777$ <u>0.53~0.54</u> (2sf OK)	A1	1.1b		
(b)	(Not suitable as) data is not symmetric <u>or</u> is skew (normal is symmetric) ("Even" distribution or a diagram <u>on its own</u> is not enough so B0)	(2) B1 (1)	2.4		
(c)	$\int x e^{-x} \left(dx \right) = \int x d(-e^{-x})$	M1	2.1		
	$= \left[-xe^{-x}\right] - \int \left(-e^{-x}\right) \left(dx\right) (+c)$	A1	1.1b		
	$\int_{0}^{n} x e^{-x} (dx) = \left[-x e^{-x} - e^{-x} \right]_{0}^{n} = \left(-n e^{-n} - e^{-n} \right) - \left[-(0) - 1 \right]$	dM1	1.1b		
	$= 1 - (n+1)e^{-n}$ (*)	A1cso* (4)	1.1b		
(d)	Require area = 90 i.e. $k \int_{(0)}^{(n)} x e^{-x} dx = 90$ (ignore limits)	M1	3.1a		
	Using the result in part (c) with $n = 4$ gives $k \left[1 - 5e^{-4} \right] = 90$	M1	2.1		
	(k =) 99(.0729)(*)	A1cso*	1.1b		
(e)(i)	[P(10 < T < 30) =] 0.64863 awrt 0.649	(3) B1 (1)	1.1b		
(ii)	[No. of patients =] $(99) \left[(1 - 4e^{-3}) - (1 - 2e^{-1}) \right]$ (= 53.1)	M1	3.4		
	Prob = $\frac{0.5366\times99}{90}$ = 0.59027[or 0.5907] = awrt <u>0.590 or 0.591</u>	A1 (2)	3.2a		
(f)	eg Patients might stay longer than 40 hours (Can ignore other comments unless clearly contradictory.)	B1 (1)	3.5b		
	(14)				
(a)	NotesM1 for an attempt to find the number between 10 and 30 (2 correct products or 48 or 48.4 seen)A1 for 2sf answer in [0.53 ~ 0.54] NB use of 48 gives 0.5333 [Correct ans implies 2/2]				
(b)	B1 for a comment suggesting not suitable based on (lack of) symmetry <u>or</u> "	1	-		
(c)	1 st M1 for attempting integration by parts in right direction. Must have $u = x$ and $v = \pm e^{-x}$ 1 st A1 for a correct first step, correct first integration and expression for second integral				
*	2^{nd} dM1 (dep on 1 st M1) for all integration attempted and some use of at leas 2^{nd} A1 for cso with no incorrect working seen. Minimum is correct int and us				
(d)	1 st M1 for realising need area under the curve (implied by the integral) = 90 2 nd M1 for use of (c) with $n = 4$ and set = 90 May be implied by sight of 99.07 or better				
* NB	Alcso for $k = 99$ or awrt 99.1 Allow use of $k = 99$ and show area = awrt 89.9 with a conclusion to score 3/3				
(e)(i) (ii)	B1 for awrt 0.649 M1 for use of (c) with $n = 1$ and $n = 3$ Don't need the 99. Implied by sight of awrt 0.54 A1 for awrt 0.590 or awrt 0.591 Allow 0.59 from correct working seen.				
(f)	B1 eg for comment, in context, about the upper limit for $\underline{\text{time}(t \text{ or } x)}(\text{time/ho})$	our may be	implied)		